On the abnormal "forced hydration" behavior of P(MEA-co-OEGA) aqueous solutions during phase transition from infrared spectroscopic insights.
نویسندگان
چکیده
Turbidity, DLS and FTIR measurements in combination with the perturbation correlation moving window (PCMW) technique and 2D correlation spectroscopy (2Dcos) analysis have been utilized to investigate the LCST-type transition of a oligo ethylene glycol acrylate-based copolymer (POEGA) in aqueous solutions in this work. As demonstrated in turbidity and DLS curves, the macroscopic phase separation was sharp and slightly concentration dependent. Moreover, individual chemical groups along polymer chains also display abrupt changes in temperature-variable IR spectra. However, according to conventional IR analysis, the C-H groups present obvious dehydration, whereas C[double bond, length as m-dash]O and C-O-C groups exhibit anomalous "forced hydration" during the steep phase transition. From these analyses together with the PCMW and 2Dcos results, it has been confirmed that the hydrophobic interaction among polymer chains drove the chain collapse and dominated the phase transition. In addition, the unexpected enhanced hydration behavior of C[double bond, length as m-dash]O and C-O-C groups was induced by forced hydrogen bonding between polar groups along polymer chains and entrapped water molecules in the aggregates, which originated from the special chemical structure of POEGA.
منابع مشابه
Co-nonsolvency of PNiPAM at the transition between solvation mechanisms.
We investigate the co-nonsolvency of poly-N-isopropyl acrylamide (PNiPAM) in different water-alcohol mixtures and show that this phenomenon is due to two distinct solvation contributions governing the phase behavior of PNiPAM in the water-rich and alcohol-rich regime respectively. While hydrophobic hydration is the predominant contribution governing the phase behavior of PNiPAM in the water-ric...
متن کاملThe Equilibrium Solubility of Carbon Dioxide in the Mixed Aqueous Solutions of Triisopropanolamine and Monoethanolamine in the Range 30-70 C and Low Partial Pressures
The equilibrium solubility data of CO2 in the various aqueous blends of triisopropanolamine (TIPA) + monoethanolamine (MEA) with the total alkanolamine concentration of 2 mole / dm3 were measured at the temperatures of 30, 40, 50, 60 and 70 oC and CO2 partial pressures below 100 kPa. The experiments were done in an atmospheric gas absorption syste...
متن کاملInfluence of imidazolium based green solvents on volume phase transition temperature of crosslinked poly(N-isopropylacrylamide-co-acrylic acid) hydrogel.
The volume phase transition temperature (VPTT) of crosslinked poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AA) hydrogel in water in the presence of five imidazolium based ionic liquids (ILs) was studied. The VPTT of PNIPAM-co-AA hydrogel can be modulated to different extents by the addition of different amounts of ILs. The modulations in VPTT values can be attributed to the IL-induced...
متن کاملFT-IR and 2D-IR spectroscopic studies on the effect of ions on the phase separation behavior of PVME aqueous solution.
Thermosensitive phase transition behavior of poly(vinyl methyl ether) (PVME) in an aqueous solution and the effect of inorganic ions on the coil-globule transition have been investigated by Fourier transform infrared (FT-IR) spectroscopy with attenuated total reflection (ATR) accessory. ATR-IR spectra of PVME aqueous solution indicate that in water-PVME-inorganic salts system, the phase separat...
متن کاملSynthesis, characterization and swelling behavior investigation of gelatin-g-Poly(Acrylic Acid-co-Itaconic Acid)
A novel pH-responsive superabsorbent hydrogel based on gelatin was prepared through crosslinking copolymerization of poly (acrylic acid) and poly (itaconic acid). The copolymerization conditions including monomers, initiator, gelatin and crosslinker concentration, reaction temperature, and neutralization percent were systematically optimized to achieve a hydrogel with swelling capacity as high ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 23 شماره
صفحات -
تاریخ انتشار 2016